metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Feng He^a* and Di Liu^b

^aSchool of Chemistry and Chemical Engineering, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China, and ^bSchool of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China

Correspondence e-mail: exstxr@zsu.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.002 Å Some non-H atoms missing R factor = 0.025 wR factor = 0.076 Data-to-parameter ratio = 14.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis[2-(hydroxymethyl)pyridine- $\kappa^2 N, O$]dinitratocopper(II)

In the crystal structure of the title compound, $[Cu(NO_3)_2 - (C_6H_7NO)_2]$, the copper(II) ion resides at an inversion centre and it has a 4 + 2 elongated ocatahedral coordination environment. The equatorial positions are occupied by two OH groups and two N atoms from a pair of neutral 2-(hydroxymethyl)pyridine ligands, while the two axial positions are weakly ligated by two nitrate O atoms. Adjacent mononuclear copper(II) complexes are further joined together by $O-H \cdots O$ hydrogen bonds to form a linear chain along the *a* axis.

Comment

Recently, we have synthesized and characterized a series of discrete dinuclear and polymeric heterometallic copper(II)–lanthanide(III) complexes. In particular, the ligand Htza (tetrazole-1-acetic acid) coordinates with Cu^{II} and lathanide(III) salts to form [CuLn(tza)₄(H₂O)₅Cl] complexes at pH = 3.5, but forms a multinuclear heterometallic complex at higher pH values (He *et al.*, 2005). We have utilized a related ligand, namely 2-(hydroxymethyl)pyridine, to see whether similar reactions occur or not. Moreover, the title compound, (I), can be used as a so-called 'metallic ligand' reagent to bind lanthanide metal ions for the subsequent preparation of heteronuclear complexes which may exhibit large ferromagnetic interactions (Costes, Dahan & Dupuis, 2000; Costes, Dahan, Dupuis & Laurent, 2000) or quadratic non-linear optical properties (Margeat *et al.*, 2004).

The copper(II) ion in (I) has an octahedral coordination environment (Fig. 1) and adjacent mononuclear copper(II) complexes are interlinked by $O-H\cdots O(nitrato)$ hydrogen bonds to form a linear ribbon extending parallel to the *a* axis (Fig. 2).

O 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

m1350

He and Liu • $[Cu(NO_3)_2(C_6H_7NO)_2]$

Received 9 June 2005 Accepted 13 June 2005 Online 17 June 2005

Experimental

Cu(NO₃)₂·3H₂O (0.242 g, 1 mmol) in water (18 ml) was mixed with 2-(hydroxymethyl)pyridine (0.218 g, 2 mmol). The resulting blue solution was stirred for 5 min and then adjusted to pH 3 with 0.5 M of an aqueous sodium hydroxide solution. The solution was allowed to evaporate slowly at ambient temperature for 40 d. Blue polyhedral crystals were collected in 59% yield.

 $D_x = 1.767 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation Cell parameters from 3474

reflections

 $\theta = 2.5 - 28.2^{\circ}$ $\mu = 1.49 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.013$ $\theta_{\rm max} = 27.5^{\circ}$

 $h = -8 \rightarrow 9$

 $k = -15 \rightarrow 15$

 $l = -10 \rightarrow 9$

Polyhedron, deep blue

 $0.39 \times 0.36 \times 0.23 \text{ mm}$

1712 independent reflections

1593 reflections with $I > 2\sigma(I)$

Crystal data

[Cu(NO₃)₂(C₆H₇NO)₂] $M_r = 405.82$ Monoclinic, $P2_1/n$ a = 7.4402 (5) Å b = 12.4849(9) Å c = 8.4844 (6) Å $\beta = 104.5240(1)^{\circ}$ $V = 762.93 (9) \text{ Å}^3$ Z = 4

Data collection

Bruker SMART APEX CCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2002) $T_{\rm min} = 0.593, T_{\rm max} = 0.726$ 4602 measured reflections

Refinement

à	
Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0519P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.025$	+ 0.1296P]
$wR(F^2) = 0.076$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
1712 reflections	$\Delta \rho_{\rm max} = 0.28 \ {\rm e} \ {\rm \AA}^{-3}$
119 parameters	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1

Selected geometric parameters (Å, °).

Cu1-N1	1.952 (1)	Cu1-O1	1.971 (1)	
N1-Cu1-N1 ⁱ N1-Cu1-O1	180 82.63 (4)	$N1 - Cu1 - O1^{i}$ $O1 - Cu1 - O1^{i}$	97.37 (4) 180	
Symmetry code: (i) -	+1 - y + 1 - z + 1			

try code: (i) -x + 1, -y + 1, -z + 1

Table 2

Hydrogen-bond geometry (Å, °).

$\overline{D - \mathbf{H} \cdots A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
01-H1···O3 ⁱⁱ	0.84 (1)	1.75 (1)	2.5567 (16)	159 (2)
Symmetry code: (ii)	x ⊥ 1 y z			

Symmetry code: (ii) x + 1, y, z.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) 1 - x, 1 - y, 1 -z.]

Figure 2

The crystal structure of the title compound. Dashed lines represent hydrogen bonds. [Symmetry code: (i) 1 - x, 1 - y, 1 - z.]

SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXL97.

References

Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Costes, J. P., Dahan, F. & Dupuis, A. (2000). Inorg. Chem. 39, 165-168.
- Costes, J. P., Dahan, F., Dupuis, A. & Laurent, J. (2000). Inorg. Chem. 39, 169-173
- He, F., Tong, M.-L. & Chen, X.-M. (2005). Inorg. Chem. 44, 559-565.
- Margeat, O., Lacroix, P. G., Costes, J. P., Donnadieu, B., Lepetit, C. & Nakatani, K. (2004). Inorg. Chem. 43, 4743-4750.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.